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Abstract

Even though there is little academic research that supports the usefulness of technical analy-
sis, its use remains widespread in financial markets. One explanation previously offered is the
ability of technical methods to identify periods of high volatility. Using Genetic Programming
techniques, ex ante optimal technical trading strategies are generated. Because they are me-
chanically generated from simple arithmetic operators, they are free of the data-snooping bias
inherent in technical analysis research. The fee an investor would be willing to pay for these
trading rules is estimated. The results indicate that highly risk-averse agents could significantly
benefit from technical strategies.



Technical analysis is the forecasting of prices based upon previous prices and/or volumes.

There are many academic studies that test the profitability of technical trading strategies. Early

studies such as Alexander and Fama and Blume apply simple filter rules, which are long when

prices rise x% above their n-day low, to equities and equity indices and find that although

such models may have predictive power, they are not capable of generating excess returns after

transactions costs. Later studies have supported these findings.

Dooley and Shafer (1976) and (1983) find “remarkable profits” from incorporating filter rules

into exchange-rate models, although these results do not account for transactions costs. Sweeney

(1986) confirms that these results continued to hold in later periods. Sweeney (1988) finds that

filter rules can produce excess returns net of transactions costs for NYSE equities. Neftci finds

that certain moving average rules, which are long when prices rise above an n-day moving

average, applied to the DJIA do generate excess returns over certain time periods, though the

issue of transactions costs is not addressed. Brock, Lakonishok, and LeBaron find that filter

and moving average rules can generate positive returns, but these may be overshadowed by

transactions costs.

Lo, Mamaysky, and Wang analyze the effectiveness of the ‘head and shoulders’ pattern for

individual US equities. They conclude that

“We find that certain technical patterns, when applied to many stocks over many

time periods, do provide incremental information, especially for Nasdaq stocks. Al-

though this does not necessarily imply that technical analysis can be used to generate

‘excess’ trading profits, it does raise the possibility that technical analysis can add

value to the investment process.”

Osler (1998) also examines the head and shoulders chart formation in foreign exchange mar-

kets, and is particularly noteworthy as it is one of only a few studies that identifies profitable

trading strategies. Osler finds that “these aggregate profits would have been both statistically

and economically meaningful regardless of transactions costs, interest differentials or risk.” In

application to equities, however, Osler and Chang find that that “head and shoulders trading is

not profitable.”
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Regardless of its standing in academic circles, technical analysis is very common among prac-

titioners. Oberlechner (2001) surveys traders on their use of technical analysis, and finds that

“Only a very small minority of foreign exchange traders demonstrate an exclusively fundamental

or exclusively chartist overall forecasting approach.” This is consistent with the previous survey

research performed by Taylor and Allen (1992), Menkhoff (1997), and Lui and Mole (1998).

These findings are a stark contrast to the general disdain of technical analysis held by most

academic practitioners. Malkiel (1981) sums up the consensus view, “Obviously, I am biased

against the chartist. This is not only a personal predilection, but a professional one as well.

Technical analysis is anathema to the academic world.” This quote, along with most academic

research, epitomizes the academic view of technical analysis, that it is primarily a manifestation

of investor irrationality. Neftci offers one possible explanation, that technical analysis might be

a practical method for reducing highly nonlinear prediction problems to more tractable forms.

Another possible explanation is offered by Brock, Lakonishok and LeBaron, who note the consis-

tent ability of simple moving average rules to forecast periods of high returns and low volatility,

although the profitability of such forecasts in the presence of transactions costs is questionable.

The subsequent findings of Sullivan, Timmermann and White and Allen and Karjalainen sup-

port this hypothesis. It is also worth noting that while technical methods date at least to the

1920’s, and anecdotal evidence points to use as far back as the 17th century, it was not until

Engle that relatively low-cost methods to estimate time-varying volatility became available.

Therefore, this research attempts to evaluate technical analysis on its ability to increase the

utility of agents of varying degrees of risk aversion. Using the method of Fleming, Kirby and

Ostdiek, the fee that a risk-neutral investor would be willing to pay for an ex ante optimal

technical strategy is estimated for 33 two-year periods between 1935 and 2000.

To eliminate potential data-snooping biases, the technical trading strategies are produced

through genetic programming (GP). Technical analysis research prior to Neely, Weller and

Dittmar and Allen and Karjalainen use trading rules that were already in common use, which

introduces the risk of data snooping. According to Sullivan, Timmermann and White, data

snooping occurs
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“when a given set of data is used more than once for purposes of inference or model

selection. When such data reuse occurs, there is always the possibility that any

satisfactory results obtained may simply be due to chance rather than to any merit

inherent in the method yielding the results.”

In essence, previous research has focused on the performance of technical strategies in common

use by applying them to historical data. However, the rules’ common usage is prima facie

evidence that the rules have been successful when applied to historical prices, and therefore

might be little more than ex post model fitting. Brock, Lakonishok and LeBaron acknowledge

this risk, conceding that “a complete remedy for data-snooping biases does not exist.” In GP,

the rules are combinations of simple operators and historical prices that are ‘optimal’ by some

measure. Because they are constructed using a mechanical process, the population from which

they are drawn is much larger than the population of previously successful trading strategies

and therefore are free from data-snooping biases.1

The use of genetic programming also readily permits the use of a greater variety of data in

the formation of trading rules. With the notable exception of Fiess and MacDonald, previous

research into technical analysis has also been limited by the exclusive use of closing prices in

trading-rule construction. Casual perusal of any technical analysis textbook will confirm the use

of open, high, and low prices in addition to closing prices in common techniques.2

This paper has five sections, the first section discusses the theory and practice of genetic

programming algorithms. The second section introduces the framework used to measure the

value of technical trading rules. The third section discusses the data and rolling estimation

procedures. The fourth section presents the results of the genetic programs. The fifth section

summarizes and offers concluding remarks.
1Although genetic programming eliminates data snooping in rule selection, the construction of the genetic

programming algorithm itself could still induce data-snooping bias.
2Trading volume is also a frequently-used statistic in the formation of technical trading strategies. However,

reliable volume data is not available for US equities over the entire time period used in this study, and is therefore
not incorporated in the analysis.
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Figure 1: Sample Trading Rule

1 Trading Rules as Genetic Programs

According to Ladd, “. . . a genetic algorithm creates a set of solutions, testing them against a given

problem, and then ‘breeding’ a new set of solutions based on some measure of success.” Genetic

programming is the application of genetic algorithms to the creation of computer programs. A

genetic program (GP) is best viewed as a hierarchy of simple components, or nodes. Figure 1

is a trading rule which specifies that if the closing price on a given date is above 500, a long

position should be taken. The root node of this rule, >, returns a boolean TRUE or FALSE, which

represents holding a long or zero position in an asset, respectively. In this rule, the root node

is also a functional node in that it operates as a mathematical function, mapping the results

of subnodes into its own results. CPR and 500 are terminal nodes, because they require no

arguments.

In principle, nodes may require and return any kind of value. In the above example, both

of the terminal nodes return real values, but the functional node returns a logical value. In

order to mix real and logical values, a model requires a typing schema. (Zumbach, Pictet, and

Masutti) In a weakly-typed model, the syntax is constructed so that logical and real values

map smoothly into one another. If an operator that requires a real argument is passed a logical

argument, then the logical TRUE(FALSE) becomes the real value 1(0). If the reverse occurred, a

positive (negative) real becomes the logical TRUE(FALSE).3 Weakly-typed models always satisfy

the closure property of Koza (1992), i.e. that all permissible combinations of operators can be

evaluated. In strongly-typed models, the form of logical and real arguments is preserved, and

syntactic rules ensure that only the proper type of values are passed. Although it increases

complexity, strong typing produces clearer rules and is also more naturally aligned with the
3This is only the most common convention. Any syntax that provides such a logical to real mapping will

suffice.
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method in which compiled languages, such as C or Fortran, treat data.

The choice of nodes in building the genetic programs is similar to those used in Neely,

Weller, and Dittmar and Allen and Karjalainen. Terminal nodes may be real [-2,2], boolean

(TRUE,FALSE), or return price data, OPR, HPR, LPR, and CPR represent the opening, high, low,

and closing price. Function nodes can be the arithmetic operations, +, −, ×, and ÷, boolean

operators, IF-THEN-ELSE, AND, OR, NOT, inequalities, <, >, square, square root, and the 1-norm

(distance). Additionally, four functions are included that operate on lagged data, each of which

requires two arguments, a data series (OPR, HPR, LPR, or CPR) and a real value, k, which indicates

the number of prior observations over which to operate. LAG returns the k-period lagged price,

MIN and MAX return the minimum and maximum values over the k previous periods, and AVG

returns the k-period average. NWD and AK also include POS, which indicates the evaluation of

the rule in the previous period, which is not used here, as it increases the computational time

required for evaluation by an order of magnitude, and it is not obvious that it should play a role

in the formation of technical trading rules.

The mapping of genetic programs into technical trading rules is relatively simple. The root

node of the rules is required to return a logical value when evaluated. This logical value maps

into either long/short, long/neutral, or short/neutral, but the binary nature of the root node

precludes more complicated results, such as long/neutral/short. For this reason, when programs

are generated below, both long/neutral and long/short rules are generated.

2 Evolving Optimal Trading Rules

The primary contribution of genetic algorithms lies in the methods’ ability to solve highly non-

linear problems using techniques modelled on biological processes. The ‘evolution’ of a genetic

program begins with the random generation of a population of rules such as that in figure

1. Typically, these initial rules are limited in both levels and number of nodes. Each rule is

evaluated based upon some fitness criteria. Then, a second generation of rules is created from

the first, based upon the members’ fitness, using operations that are analogous to evolutionary

processes, i.e. where the fittest members of the population are more likely to reproduce. This
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Table 1: Nesting of Common Technical Indicators within Functional/Terminal Node Sets.

Technical Indicator Nested in Node Sets
AK Current

Trend Lines - -
Support/Resistance X∗ X
Channel Line - -
Percentage Retracements X X
Speedlines X X
Gaps - X
Head and Shoulders - -
Double Tops/Bottoms - -
Triangles - -
Moving Average X X
Envelopes X X
Bollinger Bands X∗ X
Momentum X X
RSI X X
Stochastics - X
% R - X
MACD X X
Candlesticks - X

∗ Although these indicators can be based only on closing prices, high and low prices are most
commonly used.
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Figure 2: Recombination of Parent Rules into Child Rules.
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second generation is evaluated, from which a third is generated, and so on, until some termination

criteria is met

Only the two most common evolutionary operators in genetic programming, reproduction

and recombination (Koza), are used in this study. Reproduction copies a rule, unaltered, from

the parent generation into the child generation. Recombination is the ‘swapping’ of sub-trees of

two parent rules to create two new children. In figure 2, a sub-tree of each parent rule is chosen

and interchanged to create two new child rules. In strongly-typed models, the sub-trees must

be chosen so that both return the same kind of argument (logical or real).

As in Koza, succeeding populations are generated through 10% reproduction, and 90% re-

combination. The parent rules used in the genetic operations, instead of being chosen randomly,

are chosen with probability proportional to their fitness rank in the population, as per the

suggestion of Whitley. The probability of rule i being chosen as a parent for reproduction or
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recombination is

pi =
r3
i∑

j r3
j

(1)

where ri is the fitness rank of rule i in the population of N rules, i.e. for the fittest rule, ri = N ,

and for the least fit rule, ri = 1.

To avoid generating rules that are too specifically tailored to the dataset used in their cre-

ation, the data for the generation of each rule is divided into training, selection, and testing

periods of two years, as in Allen and Karjalainen. Each generation of rules is evolved using the

fitness measures obtained by evaluation with the training data. The fittest rule of the gener-

ation is then evaluated using the selection data and stored. A new generation is created and

evaluated, and the fittest rule from this generation is evaluated using the selection data. If it

is fitter than the fittest rule of the previous generation, it is stored, otherwise, the prior rule is

retained. The GP terminates after 50 generations without an improvement in the stored rule,

or after 200 generations. When the GP process terminates, one trading rule has been generated

for each training/selection/testing period.

Because GP cannot guarantee convergence, either locally or globally, the quality of a solution

is a monotonic function of its computational cost; as larger populations of larger rules are

allowed to evolve longer, the probability of convergence increases. Balancing this need is the

time required for estimation. The population size is 1000 rules, each of which is constrained to

100 nodes. In the initial rule generation, the rules are constrained to be no more than seven

levels deep, but in recombination, the rules can grow to be 16 levels deep. To further improve

the results, ten optimizations are performed over each set of training/selection data, differing

only in the seed value to the random number generator, and the best rule of ten is used in

subsequent testing.

3 Valuing Technical Analysis

Previous research in technical analysis has used a variety of measures of the merit of technical

analysis. Most studies up to and including BLL focus on the ability of technical trading rules

8



to deliver returns in excess of the market or risk-free return. More recently, Neely, Weller and

Dittmar, inter alia, adjusted returns for risk via regression of trading returns on the market

return to identify premia garnered for bearing systematic risk. Neely used four measures to

adjust trading returns for risk and/or correlation to the market return: changes in the Sharpe

Ratio of a portfolio when a traded asset is added, Sweeney and Lee’s X∗ statistic, which adjusts

returns for risk compared to a random portfolio, and the Xeff statistic of Dacoragna, et al.

which measures the utility that the trading strategy provides over a weighted average of return

horizons.

This study also utilizes multiple measures to assess the usefulness of technical trading. Mean

returns are used for their simplicity. Sharpe ratios are also used to measure the risk-adjusted

return. This article also adapts the methodology of Fleming, Kirby and Ostdiek to estimate the

willingness of investors to pay for technical analysis.

The simplest measure of a strategy’s usefulness is its ability to generate returns in excess of a

competing asset. Until the 1990’s, the ability to generate large mean returns net of transactions

costs was the benchmark for technical analysis research. For a technical trading program in which

I(t) is an indicator with value of 1 if long, 0 if neutral, or −1 if short, I∗(t) = 1− abs(I(t)), the

total return to a trading strategy, π =
∑

r̃t where

r̃t = (rt − rrft )I(t) +
[
I(t) ⊕ I(t − 1) × 1 − c

1 + c

]
(2)

and rt = log(pt+1/pt), the continuously compounded return, n is the number of transactions, c

is the transactions cost, ⊕ is the exclusive-or operator, and rrft is the risk-free rate. In the results

below, π is reported as the simple annualized return. Based upon the results of Sweeney (1988)

and AK, one-way transactions costs of 0.25% for out-of-sample testing are used. Neely, Weller,

Dittmar (1997) suggest using higher transactions costs in training and selection to reduce the

danger of over-fitting, and so one-way transactions costs of 1% are used in these periods.

Ignoring risk in evaluating trading rules is clearly suspect. AK note that “Even though

the rules do not lead to higher absolute returns than a buy and hold strategy, the reduced

volatility might still make them attractive to some investors on a risk-adjusted basis.” Neely
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performs an analysis similar to AK, but includes fitness measures which account for risk, such

as the Sharpe ratio. Although it fails to incorporate correlation to the market return, the

Sharpe ratio is the benchmark measure of risk-adjusted returns. The Sharpe ratio of a trading

strategy, ψ = Mean(r̃t)/StdDev(r̃t). By convention, the data are annualized before the mean

and standard deviations are computed.

The final measure is drawn from Fleming, Kirby and Ostdiek, who use it to measure the

value of volatility-timing strategies. In a departure from previous research, we estimate the fee

a risk-averse investor would pay for a technically-managed asset. Not only does this result in

an intuitive, economic measure of the value of technical analysis in the investment decision, it

is a direct test of the oft-postulated view that technical analysis itself may represent some form

of volatility-timing strategy.

If quadratic utility is viewed as a second-order approximation to the investor’s utility func-

tion, and the investor is assumed to have risk aversion represented by γ, which is invariant to

wealth, then the investor’s utility function in investment returns can be represented as

U(r̃|γ) =
T∑

t=1

r̃t − γ

2(1 + γ)
r̃2
t (3)

for r̃t the nominal return net of transactions cost in time t and with initial wealth normalized

to unity.

The goal of this study is to estimate the level of fee, expressed in basis points subtracted

from the dynamic portfolio and denoted φ, that would leave the investor indifferent between the

static and dynamic portfolios, i.e. the value of φ that solves

T∑
t=1

(r̃d,t − φ) − γ

2(1 + γ)
(r̃d,t − φ)2 =

T∑
t=1

r̃s,t − γ

2(1 + γ)
r̃2
s,t (4)

where Rs,t and Rd,t are the returns on the static and dynamic portfolios at time t,

Using equation 4, φ is estimated for the case of the static portfolio 100% invested in the

market return, and the dynamic portfolio is a one asset portfolio 100% invested in the technically-
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traded market return.

r̃s,t = rt (5)

r̃d,t = rtI(t) + I∗(t)rrft +
[
I(t) ⊕ I(t − 1) × 1 − c

1 + c

]
(6)

Note that the product I∗(t)rrft is added to compute φ, as the utility measure is a function of

nominal returns.

4 Data and Estimation

This study uses the open, high, low, and closing prices of the Dow Jones Industrial Average

from 1 January 1931 through 31 December 2001 from the Bridge Database. Interest rates are

drawn from the Fama Risk-Free Rate series. Because equity prices are non-stationary over the

sample, they are normalized on the 100-day moving average of closing prices. This results in

all prices being of the same order of magnitude, as well as preserving the relationship of open,

high, low, and closing prices.

Two years of data were used for each of the training, selection and testing periods. The

training periods start every two years, so that none of the training, selection, or testing periods

overlap. This results in 33 rules being generated for each fitness criteria.

5 Results

Table 2 reports summary statistics for the fitness measures of the optimal rules using selection

and out-of-sample data. Even though all of fitness measures for the selection data-based results

must be non-negative4, none of the mean values are more than one standard deviation from zero.

The standard deviations and extrema indicate that the rule performance is highly variable. The

number of rules which result in trading vary from 18 for ψ/L/S to 9 for φ, γ = 10/L/S. The

out-of-sample results are very different. Only one of the fitness criteria generates more rules
4Rules which are unable to generate a positive fitness value on the selection data are replaced by a rule which

is always long.
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with positive fitness than negative, and only two fitness measures have means greater than zero.

The rules themselves also vary significantly, though the summary statistics reported in table

2 obscure this fact. Most of the rules have no intuitive meaning. Equation 7 is one example;

this rule is long if

0 < |(OPR× 0.4113) − |CPR− 0.5420| | (7)

This rule resulted from the Sharpe ratio fitness criteria, long/neutral positions, and training

and selection periods of 1985-86 and 1987-88. Figure 3 charts prices and the positions taken

by the rule during the month of October, 1987–during the selection period. During the entire

two-year selection period the rule conducted 20 transactions and was long 486 out of 506 days.

This trading rule returned 19.5%; the market returned 3.4%. The standard deviation of the

dynamic strategy was also lower, 21% rather than 27.5%. This rule was applied to 1989-90 for

out-of-sample evaluation, which included August, 1990–the invasion of Kuwait. As expected, the

rule is less successful when applied to out-of-sample data. Figure 4 displays the positions taken

during August and September of 1990, in which the rule has much greater difficulty predicting

the returns of the next period. During the entire out-of-sample period, the rule under-performed

the market, returning -0.2% rather than 3.2%, while long 473 days out of 505, using 40 trades.

Tables 3 and 4 report the cumulative performance of the optimal trading rules over the whole

data span. These are the same 33 trading rules described in table 2, but the cumulative results

assume that an investor updates the trading rule every two years. If no rule is able to produce

returns greater than the market in a selection period, then a buy-and-hold strategy is adopted

for the succeeding testing period. These results measure the performance of this strategy over

the entire 66 years of DJIA data. Total trading returns, with and without transactions costs

are reported, as is the market return, along with standard deviations. Also reported is the

average return and standard deviation for periods in which the combined trading rule is ’long’

and ’neutral/short.’ The utility based fee, φ is also reported for all of the rules, at γ = 1 and

γ = 10. In addition, the CAPM α and β are reported, along with the regression’s R2.

Table 3 reports the cumulative performance using selection data–each rule is evaluated using

the trading strategy used in its generation. Certain consistencies across the results are immedi-
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ately noticeable. As should be expected from results generated with in-sample data, the results

in table 3 are very positive. From comparison of the trading return to the market return, and the

long return to the neutral/short return, the rules are clearly able to distinguish between periods

of high and low returns. When transactions costs are omitted, seven of the eight strategies are

able to generate above-market returns, with transactions costs, the number is only reduced to

six. Of the rules, all are able to reduce the variability of returns beneath the market, although

some only by the barest of margins. When evaluated by the level of φ, all of the cumulative

rules are able to improve on the buy-and-hold strategy for both γ = 1 and γ = 10.

The results reported in table 4, computed with out-of-sample data, are less impressive.

None of the dynamic strategies produce returns greater than the buy-and-hold strategy after

transactions costs, although two are quite close. Omitting transactions costs, three strategies

produce above-market returns. Five of the strategies remain able to distinguish between periods

of high and low returns, and in all cases, the higher returns also exhibit higher variability.

The return-maximizing (π) long/neutral strategy and the Sharpe Ratio-maximizing long/short

strategies exceed the market return before transactions costs, and nearly match it when trans-

actions costs are included. However, neither significantly reduces the variability of returns, and

so both fail to improve on the Sharpe Ratio of the market. Each of the rules generates a positive

φ at γ = 1, of 96 basis points for π, L/N, and 70 basis points for ψ, L/S. Both of these rules are

highly correlated to the market asset, with β of .93 and .82. This is not surprising; these rules

are long 90% and 88% of the time, respectively.

The out-of-sample results continue to provide evidence that technical methods can discrim-

inate between periods of high and low returns, as the returns on long days remain higher than

those of neutral/short days. Unlike the selection results, in which five specifications had lower

volatility on long days than short days, the variance on the short/neutral days is lower for all

specifications.

If technical methods are viewed as volatility-timing strategies instead of excess-return gener-

ating strategies, then it is natural to examine the impact of these strategies on the mean-variance

frontier. As in the calculation of φ, investors can choose between two risky assets, the market
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portfolio and the technically-traded market portfolio, in addition to a risk-free asset. Portfolio

weights are chosen to

min
ω

ω′Σω (8)

subject to

ω′ + (1 − ω′ι)rrf = r̂ (9)

where Σ is the covariance matrix of asset returns, ω are the asset weights, rrf is the risk-free

rate, r̂ is the target rate, and ι is a conformable vector of ones. The solution is

ω =

(
r̂ − rrf

)
Σ−1

(
r − rrfι

)
(
r − rrfι

)′
Σ−1

(
r − rrfι

) (10)

where r is a vector of asset returns. For this analysis, rrf, r̂, and r are the mean risk-free rate,

the mean market return before transactions costs, and the mean asset returns over the period

1931-2000, respectively.5

Table 5 reports the weights for each rule specification, as well as return and volatility results

for the out-of-sample data. These results demonstrate that technical strategies have the potential

to offer significant improvements in portfolio performance. The value of optimally-weighted

portfolios is inversely related to the correlation of the traded asset to the market portfolio.

Creating optimally-weighted portfolios marginally improves the performance based upon the

first three fitness measures, π, ψ, and φ, γ = 1. The variance of π, L/S is greatly reduced, to

8.7% from 14.6% for the simple portfolios. More interesting are the results of forming optimal

portfolios with the φ, γ = 10 strategy. After transactions costs, the returns of the L/N and L/S

rules are 2.396% and 2.518%, but the standard deviations are only 6.949% and 7.539%. The

Sharpe Ratio of the market over this time period is 0.2231, but the Sharpe Ratios for these two

portfolios are 0.3448 and 0.3340, respectively–a substantial improvement.
5Because the weights are being created using ex post rules and returns, these weighted results do constitute

data-snooping. Caveat lector.
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6 Conclusion

Technical analysis played a prominent role in financial markets decades before the birth of

mean-variance analysis or Sharpe Ratios, and it remains in widespread use today. In spite

of this, the use of technical methods to predict future prices remains in conflict with weak-

form market efficiency, and there remain no theoretical underpinnings to technical analysis. If,

instead of increased first-moment returns, technical analysis is viewed as a method of increasing

risk-adjusted returns, there is no longer a conflict with weak-form efficiency.

The results in this paper indicate that this may be a plausible explanation of technical

analysis in financial markets. In the presence of trading costs, the rules generated in this study

cannot consistently generate returns in excess of the market. This study demonstrates that these

rules can consistently discriminate between periods of high and low returns and volatilities in

out-of-sample data. Rules can that are free of data-snooping bias can be constructed that

significantly increase risk-adjusted returns, as measured by the fee that a risk-averse investor

would pay to own the portfolio. Some evidence is also introduced that suggests that these rules

may be even more valuable when they are part of an optimally-weighted portfolio.

The results of this study must be considered in the context of its limitations. Genetic

programming, used in order to eliminate potential data-snooping biases common in technical

analysis research, cannot guarantee convergence to global minima or maxima. Therefore these

results can only be properly interpreted as lower bounds of GP performance in this application.

The optimally-weighted portfolio returns reported in table 5 are constructed using ex post opti-

mal weights. Finally, these results are contingent on the ability to execute at the daily closing

price. The last two points are prime opportunities to extend this research, by using ex ante op-

timal weights and assessing the impact of executing at the following day’s open price. Inclusion

of other conditioning information, such as interest rates or other domestic or European index

levels are further possible avenues of research.

15



T
ab

le
2:

O
pt

im
al

T
ec

hn
ic

al
T
ra

di
ng

R
ul

es
:

Su
m

m
ar

y
St

at
is

ti
cs

π
ψ

φ
,γ

=
1

φ
,γ

=
10

L
/N

L
/S

L
/N

L
/S

L
/N

L
/S

L
/N

L
/S

S
el

ec
ti

on
D

at
a

M
ea

n
5.

39
5

4.
10

3
0.

44
2

0.
37

5
2.

26
4

4.
75

8
9.

88
4

4.
26

1
St

d.
D

ev
.

7.
57

0
5.

87
5

0.
60

5
0.

52
3

4.
30

4
10

.1
98

15
.0

35
11

.9
52

M
ax

29
.1

49
20

.8
92

2.
12

0
1.

97
4

16
.2

92
41

.9
52

64
.9

12
63

.4
48

M
in

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

n
>

0
16

15
17

18
13

13
18

9
n

<
0

0
0

0
0

0
0

0
0

A
ve

ra
ge

N
od

es
46

.8
23

53
.1

33
42

.1
05

46
.7

77
35

.9
33

40
.6

15
46

.4
28

45
.4

44
A

ve
ra

ge
L
ev

el
s

7.
82

3
6.

86
6

7.
42

1
7.

94
4

7.
20

0
7.

53
8

6.
76

1
7.

33
3

O
u
t

of
S
am

p
le

D
at

a
M

ea
n

0.
48

4
-2

.6
86

-0
.0

01
-0

.0
63

-0
.3

67
-4

.0
11

0.
63

3
-4

.6
48

St
d.

D
ev

.
4.

24
3

7.
29

2
0.

61
1

0.
51

5
4.

19
2

11
.8

42
7.

11
0

11
.0

58
M

ax
16

.1
41

14
.6

43
1.

99
9

1.
65

3
15

.2
09

8.
63

2
23

.3
16

8.
50

1
M

in
-1

1.
08

2
-2

6.
01

3
-1

.6
25

-1
.3

15
-1

0.
86

9
-6

0.
25

6
-1

4.
50

2
-4

8.
12

0
n

>
0

4
2

7
4

4
1

5
1

n
<

0
4

8
5

5
6

7
9

8
A

ve
ra

ge
N

od
es

46
.8

23
53

.1
33

42
.1

05
46

.7
77

35
.9

33
40

.6
15

46
.4

28
45

.4
44

A
ve

ra
ge

L
ev

el
s

7.
82

3
6.

86
6

7.
42

1
7.

94
4

7.
20

0
7.

53
8

6.
76

1
7.

33
3

T
he

st
at

is
ti

cs
re

po
rt

ed
re

fe
r

to
th

e
fit

ne
ss

ac
hi

ev
ed

by
th

e
33

te
ch

ni
ca

l
tr

ad
in

g
ru

le
s.

16



T
ab

le
3:

C
um

ul
at

iv
e

P
er

fo
rm

an
ce

of
O

pt
im

al
T
ec

hn
ic

al
T
ra

di
ng

R
ul

es
on

Se
le

ct
io

n
D

at
a.

π
ψ

φ
,γ

=
1

φ
,γ

=
10

L
/N

L
/S

L
/N

L
/S

L
/N

L
/S

L
/N

L
/S

T
ot

al
R

et
ur

n
3.

66
2

7.
55

9
3.

59
5

5.
37

1
5.

40
4

9.
71

6
5.

26
3

9.
26

8
T
ot

al
R

et
ur

n∗
3.

99
4

8.
57

7
4.

14
8

6.
20

7
5.

82
1

10
.7

89
6.

05
0

9.
63

4
St

d.
D

ev
.,

T
ot

al
13

.7
75

15
.4

83
12

.8
56

15
.4

87
13

.4
90

15
.4

79
8.

81
4

15
.4

81
M

ar
ke

t
R

et
ur

n
4.

08
6

M
ar

ke
t

St
d.

D
ev

.
15

.4
90

R
et

ur
n,

L
on

g
4.

45
0

7.
41

7
4.

82
1

5.
94

3
8.

01
4

8.
67

6
12

.8
09

8.
67

9
St

d.
D

ev
.,

L
on

g
14

.5
24

15
.2

48
13

.8
37

15
.5

89
15

.7
45

14
.8

28
12

.6
14

15
.4

87
R

et
ur

n,
N

eu
tr

al
/S

ho
rt

1.
04

2
-1

3.
60

0
-0

.3
19

-7
.4

00
-5

.9
69

-1
9.

60
0

-3
.5

52
-1

1.
81

4
St

d.
D

ev
.

N
eu

tr
al

/S
ho

rt
22

.3
54

16
.8

12
23

.3
62

14
.7

91
14

.7
47

18
.9

09
17

.7
86

15
.4

59
φ
,γ

=
1

0.
52

0
4.

12
8

0.
33

3
2.

15
8

2.
17

0
6.

04
0

1.
50

6
5.

03
1

φ
,γ

=
10

2.
87

3
4.

16
6

3.
67

6
2.

19
3

4.
91

6
5.

55
7

9.
10

8
5.

07
8

α
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
β

0.
79

0
0.

65
9

0.
68

8
0.

76
2

0.
75

8
0.

57
2

0.
32

4
0.

58
8

R
2

0.
79

0
0.

43
5

0.
68

8
0.

58
1

0.
75

8
0.

32
7

0.
32

4
0.

34
6

%
D

ay
s

in
M

kt
:

89
.9

48
85

.6
04

86
.3

16
86

.9
80

73
.3

93
85

.7
31

48
.7

42
79

.4
08

T
ra

de
s

42
62

70
52

52
64

98
22

T
ra

di
ng

po
si

ti
on

s
fo

r
ea

ch
of

th
e

33
ru

le
s

ar
e

ge
ne

ra
te

d
fo

r
th

e
se

le
ct

io
n

da
ta

an
d

co
nc

at
en

at
ed

in
or

de
r

to
pr

od
uc

e
th

e
cu

m
ul

at
iv

e
re

su
lt

s.
Fo

r
th

is
ta

bl
e,

1.
0=

1%
.

17



T
ab

le
4:

C
um

ul
at

iv
e

P
er

fo
rm

an
ce

of
O

pt
im

al
T
ec

hn
ic

al
T
ra

di
ng

R
ul

es
on

O
ut

-o
f-
Sa

m
pl

e
D

at
a.

π
ψ

φ
,γ

=
1

φ
,γ

=
10

L
/N

L
/S

L
/N

L
/S

L
/N

L
/S

L
/N

L
/S

T
ot

al
R

et
ur

n
3.

25
0

-1
.1

08
2.

42
5

3.
13

0
2.

67
7

-1
.1

55
0.

20
6

-1
.4

71
T
ot

al
R

et
ur

n∗
3.

69
0

0.
52

7
3.

52
1

3.
94

8
3.

09
9

2.
85

7
1.

23
1

-0
.3

26
St

d.
D

ev
.,

T
ot

al
14

.1
37

14
.6

84
13

.8
65

14
.6

82
13

.0
00

14
.6

83
11

.5
58

14
.6

84
M

ar
ke

t
R

et
ur

n
3.

27
5

M
ar

ke
t

St
d.

D
ev

.
14

.6
82

R
et

ur
n,

L
on

g
4.

09
0

2.
19

7
4.

08
5

4.
12

6
4.

29
4

3.
59

7
2.

40
9

1.
84

3
St

d.
D

ev
.,

L
on

g
14

.8
69

14
.9

35
14

.9
14

14
.9

61
15

.2
57

14
.9

57
16

.1
22

15
.3

20
R

et
ur

n,
N

eu
tr

al
/S

ho
rt

-3
.9

38
10

.6
48

-1
.6

22
-2

.5
91

0.
67

9
1.

47
9

4.
23

1
9.

16
0

St
d.

D
ev

.
N

eu
tr

al
/S

ho
rt

12
.7

90
12

.9
22

13
.1

09
12

.4
59

13
.0

38
12

.9
19

12
.9

88
11

.8
55

φ
,γ

=
1

0.
95

8
-3

.0
53

0.
11

4
0.

69
7

0.
24

2
-2

.2
72

-2
.3

44
-3

.9
90

φ
,γ

=
10

1.
74

0
-3

.0
08

1.
22

6
0.

76
3

2.
45

5
-2

.2
44

1.
41

3
-3

.9
40

α
0.

00
0

-0
.0

00
0.

00
0

0.
00

0
0.

00
0

0.
00

0
-0

.0
00

-0
.0

00
β

0.
92

7
0.

79
2

0.
89

1
0.

82
6

0.
78

3
0.

77
8

0.
61

9
0.

73
4

R
2

0.
92

7
0.

62
7

0.
89

1
0.

68
2

0.
78

3
0.

60
5

0.
61

9
0.

53
9

%
D

ay
s

in
M

kt
:

90
.3

96
86

.5
98

86
.4

17
87

.9
25

72
.6

00
85

.6
76

51
.3

98
79

.6
59

T
ra

de
s

56
10

8
14

0
52

54
26

2
13

4
76

T
ra

di
ng

po
si

ti
on

s
fo

r
ea

ch
of

th
e

33
ru

le
s

ar
e

ge
ne

ra
te

d
fo

r
th

e
se

le
ct

io
n

da
ta

an
d

co
nc

at
en

at
ed

in
or

de
r

to
pr

od
uc

e
th

e
cu

m
ul

at
iv

e
re

su
lt

s.
Fo

r
th

is
ta

bl
e,

1.
0=

1%

18



T
ab

le
5:

C
um

ul
at

iv
e

P
er

fo
rm

an
ce

of
E
x

P
os

t
O

pt
im

al
ly

-W
ei

gh
te

d
T
ra

di
ng

R
ul

es
on

O
ut

-o
f-
Sa

m
pl

e
D

at
a.

π
ψ

φ
,γ

=
1

φ
,γ

=
10

L
/N

L
/S

L
/N

L
/S

L
/N

L
/S

L
/N

L
/S

T
ot

al
R

et
ur

n
2.

71
7

1.
94

9
2.

40
0

2.
85

8
2.

81
0

1.
33

5
2.

39
6

2.
51

8
T
ot

al
R

et
ur

n∗
3.

28
9

3.
29

3
3.

29
2

3.
29

1
3.

27
7

3.
28

5
3.

30
8

3.
31

1
St

d.
D

ev
.,

T
ot

al
13

.6
84

8.
73

2
14

.1
77

13
.9

88
12

.6
32

13
.9

02
6.

94
9

7.
53

9
M

ar
ke

t
R

et
ur

n
3.

27
5

M
ar

ke
t

St
d.

D
ev

.
14

.6
82

φ
,γ

=
1

-0
.0

02
-0

.1
79

0.
00

1
0.

09
6

-0
.0

17
-0

.1
19

0.
00

8
-0

.1
73

φ
,γ

=
10

1.
26

7
6.

16
2

0.
66

5
0.

99
5

2.
41

4
0.

81
5

7.
69

9
7.

09
3

M
kt

.
W

ei
gh

t
-0

.3
30

0.
97

3
0.

20
7

0.
48

3
1.

56
7

1.
26

6
0.

75
5

0.
74

0
D

yn
W

ei
gh

t
1.

29
4

-0
.7

79
0.

81
2

0.
51

3
-1

.0
46

-0
.4

69
-0

.8
60

-0
.6

47

19



1-
Oct-

87

5-
Oct-

87

7-
Oct-

87

9-
Oct-

87

13
-O

ct-
87

15
-O

ct-
87

19
-O

ct-
87

21
-O

ct-
87

23
-O

ct-
87

27
-O

ct-
87

29
-O

ct-
87

1500

1700

1900

2100

2300

2500

2700

2900

D
o

w
 J

o
n

es
 In

d
u

st
ri

al
 A

vg

Figure 3: Positions of Selected Trading Rule for the Month of October, 1987.
Note: The portfolio is long except for the shaded regions, which represent neutral positions.
These positions result from the rule generated using 1985-86 training data and 1987-88 selection
data, therefore these positions are generated ‘in-sample,’ using the Sharpe Ratio fitness criteria.
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Figure 4: Positions of Selected Trading Rule for the Months of August and September, 1990.
Note: The portfolio is long except for the shaded regions, which represent neutral positions.
These positions result from the rule generated using 1985-86 training data and 1987-88 selection
data, therefore these positions are generated ‘out-of-sample,’ using the Sharpe Ratio fitness
criteria.
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